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Grain shape and distribution of the 
grain-boundary density in polycrystalline 
materials 

J.A.  S Z P U N A R * ,  B. K. T A N N E R  
Department of Physics, University of Durham, South Road, Durham, UK 

A mathematical formalism using a series expansion in spherical surface harmonics is 
proposed to describe the grain shape and grain-boundary density distribution in poly- 
crystalline materials. The mathematical treatment is compatible with existing descriptions 
of crystalline texture. Experiments on high strength steel show that expansion to second 
order suffices and measurements of grain size and grain-boundary density in three perpen- 
dicular directions characterize these aspects of the structure. 

1. I ntroduction 
The physical properties of polycrystalline materials 
can be influenced very strongly both by the 
character of individual grains and the statistical 
distributions characterizing them. As part of a pro- 
gramme to relate the magnetic and metallurgical 
properties of high strength steels, we have made 
extensive studies of the grain size and shape in 
such materials. 

An understanding of the properties of materials 
will be much better founded if a full mathematical 
description is provided of the grain-orientation dis- 
tribution, grain shape and grain relative orien- 
tation. The idea of an orientation distribution 
function of various structural elements of the 
polycrystalline materials has been put forward by 
Bunge [1]. This concept has been developed [1] 
and successfully applied not only to describe the 
texture but also to study the influence of texture 
on various properties of polycrystalline materials. 
For example, the macroscopic magnetic aniso- 
tropy of grain-oriented iron-silicon steel has been 
related to the intrinsic magnetocrystalline aniso- 
tropy via the orientation distribution function [2]. 
In addition, in permanent magnet manufacture 
partial alignment of elongated grains is induced 
and this has a decisive influence on the magnetic 
properties. The concept of particle orientation dis- 
tribution functions can be used in calculating the 

anisotropy of these properties [3]. However, no 
attempts have been made to extend the concept of 
distribution functions to the description of grain 
shape. In this paper we present a mathematical 
description of the grain shape in terms of a grain- 
shape function S(r) and a formafism for an analog- 
ous grain-boundary density distribution function 
B(r). Examples of their use to characterize the 
microstructure of high strength steels are presented. 

2. The grain-shape function (GSF) 
Polycrystalline materials consist of a collection 
of grains which differ in size, shape and relative 
orientation and which may also have differing 
crystallographic structure. In a number of impor- 
tant applications, the concept of the mean grain 
shape suffices but this is not sufficient for 
materials in which varying and inhomogeneous 
grain structures are observed. To describe such 
microstructures we also need to introduce other 
functions which characterize the distribution of 
the grain dimensions. 

In order to define a grain-shape function we 
define a Cartesian coordinate system in the frame 
of the specimen (Fig. 1). The three axes (x , y ,  z) 
may, for example, be chosen to correspond to 
specimen length, rolling direction or any other 
symmetry direction introduced during the 
specimen preparation process. 
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Figure I Illustration of the geometry of different cross- 
sections of the specimen as used for metallographic 
examination. 

We define a unit vector r such that its direction 
(Fig. 1) is determined by polar coordinates ~,/3. 
The length of the mean grain D(a, 13) = D(r) along 
this direction, and therefore the grain-dimension 
anisotropy, is known from experiment. 

This dimension anisotropy of the mean grain 
may be complex, if the grain is very elongated or 
flattened and therefore we use a series expansion 
of spherical harmonics to represent the grain- 
dimension anisotropy function namely, 

N(t ) 
D(a,/3) = D(r) = ~. ~ d~(D)k}~(r) (1) 

1=0 v= l  

The series expansion coefficients dy(D) are 
expressed in units of length and can be obtained 
by multiplying each side of Equation 1 by k~V(r) 
and integrating over all solid angle. This yields: 

dr(D) = @ D(r)k?V(r) dr (2) 

Often the description of the mean grain shape is 
needed and the above grain-dimension function 
(Equation 1) has to be normalized in order to 
compare the shape distribution of grains of various 
sizes. This grain-shape function (GSF) is defined as 

h(r) 
- S(r) (3) 

Do 

Where D(r)/Do is the relative dimension of a grain. 
Do is the diameter of a spherical grain for which 

D(r)/Do = 1 and its value is calculated from the 
normalization condition: 

1 
i) O(r) dr (4) Do = 

where dr is an element of solid angle given by 

dr = sina de d/3 

Since the grain-shape function is normalized, i.e. 

S(r) dr = 4n (5) 

we obtain the following formula for the grain 
shape series expansion coefficients 

D(r)k?V(r) dr 

sf = 4~ (6) 

D(r) dr 

Substituting Equations 2 and 4 into Equation 6 to 
obtain 

sr = d~(D)/Do (7) 

and the GSF will be given as 

NCZ ) 
S(r) = t E s~'kf(r) (8) 

l=O V=l 

Since the relation between grain-dimension coeffi- 
cients and grain-shape coefficients is known 
(Equation 7), Equation 8 is formally equivalent to 
Equation 1 which describes the grain-dimension 
anisotropy. 

The normalization constant, Do, carries the 
dimension and therefore dimensionless expansion 
coefficients of the GSF (multiplied by Do) can be 
used to express the actual anisotropy of dimen- 
sions of the average grain. 

3. The grain-boundary density distribution 
function (GBDDF) 

If the number of grain boundaries per unit length 
is measured in various directions r we may intro- 
duce the mean grain-boundary density function 
B(r). 

A similar mathematical formalism to that 
applied to the grain dimension description will be 
used. Thus, the grain-boundary density distri- 
bution can be written 

_ ~ N(Z) 
B(r) - ~ bf(B)ky(r) (9) 

l=O /)=1 

Series expansion coefficients can be calculated in 
the same way as those of Equation 2, that is 

b~(B) = ~B(r)k~V(r) dr (10) 

Since B(r) expressed the number of grain boun- 
daries per unit length, the b~(B) coefficients are 
not dimensionless. 
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The dimensionless function A(r) which describes 
the anisotropy of  grain-boundary density will be 
defined as the ratio of  grain-boundary density in 
direction r to the mean grain-boundary density, 
Bo. Physically B0 corresponds to an isotropic dis- 
tribution of  the grain-boundary density. Thus, we 
have 

B(r) 
- -  = A(r)  ( 1 1 )  
B0 

Again, A(r) can be expanded in surface spherical 
harmonics such that 

N(1) 

A(r) = ~ Z g}'k}'(r) (12) 
/=0 v=l  

The function A(r) is normalized 

(~A(r) dr = 4~r (13) 
~ 

and the coefficients gy are related to the coeffi- 
cients bV(B) through the relation, 

= b~(B)/Bo (14) 

Bo can be calculated from 

Bo = l q ~  B(r) dr (15) 
47r ~ 

4. Series convergence 
While the above formalism is quite general and has 
the advantage of  being directly compatible with 
the standard description of crystallographic tex- 
ture, if the series converges slowly, the description 
has little practical significance. In order to test the 
speed of  convergence in typical engineering 
materials we have calculated the grain shape and 
grain-boundary density distribution functions for 
ferrite and pearlite in a typical constructional 
steel. We define the specimen coordinate system 

such that x is parallel to the rolling direction and 
z is perpendicular to the coupon surface. 

Ten specimens were cut, all with surfaces con- 
taining the z-axis and with values of/3 incremented 
in 10 ~ intervals from 0 ~ to 90 ~ Each specimen 
was polished and the grain boundaries etched and 
photographed. The number o f  intersections of  
grain boundaries with an array of  parallel lines was 
counted. By rotating this array on the micrograph, 
measurements were made for values of  a incre- 
mented in 10 ~ intervals from 0 ~ to 90 ~ From this 
we obtained the density of  grain boundaries in 100 
different directions. Measurements were carried 
out separately for ferrite and pearlite phases. 

The data have been used to calculate the series 
expansion coefficients for the grain-shape function 
:and the grain-boundary distribution function is 
both ferrite and pearlite structures. Table I shows 
the values of  the coefficients of the grain-shape 
function obtained for expansion up to l = 22. It 
is evident that the expansion converges rapidly 
and beyond I = 4, no coefficient is above the 
statistical noise. 

In order to test the internal consistency of  
truncation after two or three terms, the series 
expansion coefficients have been used to recal- 
culate the mean shape of  ferrite and pearlite grains. 
The maximum and minimum values o f  the grain 
length are shown in Fig. 2, for different numbers 
of  expansion coefficients ranging from/max = 2 to 
lmax -- 22. For the specimen under investigation, 
truncation of the grain-shape function at/max = 4 
or /max = 6 gives results which agree well with 
experimental data, while truncation at lm~ = 2 
gives a very reasonable approximation. 

Fig. 2 also provides information on the grain- 
shape anisotropy and we note that the pearlite 
grains are more elongated than the ferrite grains. 

TAB L E I Exemplary series expansion coefficients characterizing the shape of pearlite grains 

l u 

1 2 3 4 5 6 7 8 9 10 

2 -0.529 0.112 
4 0.074 0.034 0.128 
6 -0.020 -0.049 -0.038 0.050 
8 0.029 0.053 0.084 -0.025 -0.026 

10 -0.052 -0.027 -0.022 0.003 -0.014 
12 0.018 0.047 0.023 0.032 - 0.020 
14 -0.016 -0.009 - 0.009 0.022 0.019 
16 0.017 -0.001 0.018 0.011 - 0.002 
18 -0.035 -0.004 0.008 -0.017 0.017 
20 0.010 0.016 0.007 0.029 -0.017 
22 - 0.013 - 0.018 - 0.006 - 0.003 - 0.003 

-0.005 
0.007 -0.038 
0.035 -0.079 -0.010 

-0.019 -0.020 -0.003 
0.004 -0.023 0.022 

-0.014 0.013 -0.006 
0.030 0.002 0.046 

-0.050 
0.052 -0.022 
0.013 0.018 
0.053 0.004 
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The distribution of anisotropy is conveniently 
illustrated in stereographic projections of  the 
grain-shape function on the plane of  the specimen. 
These are shown in Fig. 3 for ferrite and pearlite, 
respectively. A value of  unity corresponds to a 
spherical grain shape. 

5 .  E l l i p s o i d a l  g r a i n s  
Very often rolling treatments or recrystallization 
processes result in regular shapes of  grains which 
can be approximated as ellipsoidal. Such an 
approximation corresponds to truncation of  the 
series expansion at l =  2, retaining only two 
coefficients, and as seen in the last section, this 

Figure2 Maxima and minima of the 
gain-shape function calculated using dif- 
ferent numbers of expansion coefficients. 

procedure does not introduce unacceptable errors. 
In this case we need to measure the grain size D 
only in three perpendicular directions in order to 
determine the coefficients. Let us make measure- 
ments in Xo, Y0 and Zo directions corresponding to 
the specimen length and directions normal and 
transverse to the coupon surface. These data can 
be obtained from measurements on two perpen- 
dicular surfaces. The spherical angular coordinates 
corresponding to these directions are 

DL = x0 = (90 ~ , 0  ~ 

DT = Yo = (900 , 9 00 ) (16) 

DN = Zo = (0 ~  ~ 

DL DL 

DN DT DN DT 
Figure 3 Stereographic projection of the grain-shape function onto the plane xy of the specimen. (a) Ferrite grain, (b) 
Pearlite grain. The dashed line refers to a GSF value of 1.15. 
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The relevant spherical functions are [1 ] 

k~(r) = 1-i-~ J (3cos2a - 1) 
(17) 

[ 15t1'  k (r) = sin  c~ 

Substituting Equation 17 into Equation 1 we 
obtain 

D(Xo)~'I{I'~-S~[ -[511/2]''[- ~']'-~] 1 '2 t'i~) } [ 5 \1/2 

1(  [ / 5 V/2I / 5 V:2~ 

D(zo) = ~ 1 +s~[  \16rr] ]J (18) 

Solving this system of equations for N, s~ and s~ 
yields 

1 D(xo) + D(yo) + D(zo) 
N 3 

4- 
7 t  /2 D(Xo) + D(yo) + D(zo) 

6 r} 
3 [ 2D(xo) + D(zo) 

4 - {15 y,2Ln(xST-D yo 5(Zo)] 
~16zr] 

3D(zo) 1] 

(19) 

The grain shape can be thus expressed by 

S(r) = 1 + s~k~(r) + s~k~(r) (20) 

and the grain size function is then 

1 
D(r) = ~ [1 + s~k~(r) + s~k~(r)] (21) 

Similarly, we can obtain the grain-boundary 
density distribution coefficients by measurements 
of the number of grain boundaries per unit length 
B in three orthogonal directions. Using a simplified 
expression, as for the grain-shape function, one 
obtains 

1 B(xo) + B(yo) + B(zo) 
M 3 

1 3B(zo) _] 
bl - [ ~,/2 (Xo) + B(yo) + B(zo) 1 (22) 

2 

3 I 2B(xo)+B(zo) 1] 
2 (15 t1/2 [B(x~-~(~O)-~(Zo) 

~16rr] 

Thus the grain boundary density distribution 
function B(r) is given by 

1 
B(r) = ~ [1 + b~k~(r) + b~k~(r)] (23) 

Tables IIA to IIC show the coefficients of another 
typical steel obtained using the simplified method 
of analysis. 

It is important to note that a variety of descrip- 
tions are possible for the grain-boundary density 
in two-phase materials. Large segregations of 
pearlite or ferrite structure require a definition of 
GBDDF which has only local meaning and charac- 
terizes the grain boundary density separately for 
ferrite and pearlite phases. Alternatively, a global 
function may be defined for the whole specimen 
which therefore represents the mean value of the 
grain-boundary density. All grain boundaries are 
counted regardless of the difference in phase and 
distribution of phases. The coefficients charac- 
terizing the grain-density distribution function 
defined in both manners are given in Table II. The 
maximum grain-boundary density obtained from 
the latter definition is higher than that for the 
ferrite but lower than that for the pearlite struc- 
ture, since the pearlite grains are smaller than the 
ferrite grains. In relating magnetic and metallurgical 
properties of the high-strength steels such as used 
as an example here, there will be an additional 
complication due to the fact that the pearlite is 
itself a two-phase mixture. This additional com- 
plexity does not in any way invalidate the math- 
ematical model developed but it should be noted 
that extra parameters may be necessary to specify 
the distribution of the grain boundaries in the 
pearlite grains themselves if correlation between 
physical parameters is attempted. 

Finally we note that the present formalism is 
well suited to the use of computer graphics for 
production of two-dimensional diagrams of the 
anisotropy of the grain-boundary density. An 
example of this is shown in Fig. 4 where the length 
of the line for a given polar coordinate a,/3 rep- 
resents the difference between the grain-boundary 
density at a, t3 and the minimum grain-boundary 
density. 
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T A B L E I I A Exemplary coefficients characterizing GSF 

GSF Experimental data Coefficients of expansion Calculated Calculated 
maximum minimum 

D(xo) D(yo) D(zo) N s~ s~ value of value of 
(tim) (t~m) (ttm) function function 

(Urn) (um) 

Ferrite 6.5 6.3 5.2 6.0 -0.29 0.03 6.5 5.2 
pearlite 5.3 4.2 4.0 4.5 -0.18 0.22 5.3 4.0 

TAB L E IIB Exemplary coefficients characterizing GBDDF 

GBDDF Experimental data Coefficients of expansion (no mm -1) (no mm-1) 
(local meaning) M b 12 b B(xo) B(yo) B(z o) 

(nomm -1) (nomm -1) (nomm -l) 

Ferrite 154 153 192 168 0.22 -0.03 159 154 
pearlite 188 238 250 225 0.17 -0.20 250 188 

TAB L E I IC Exemplary coefficients characterizing GBDDF 

GBDDF Experimental data Coefficients of expansion (no mm -1) (no mm-1) 

(characterizing B,(xo) B'(yo) B'(zo) M s b'21 b'22 
bulk specimen) (no ram_l) (no mm_l) (no mm_l) 

Ferrite + 
168 189 205 187 0.15 -0.10 205 168 pearlite 

6. Conclusions 
A series expansion method has been developed to 
describe the anisotropy of  grain shape and grain- 
boundary density in polycrystall ine materials. The 
method is compatible with the standard math- 
ematical t reatment  of  crystallographic texture. 
Already,  the formalism has been used to extend 
the Stoner and Wohlfarth theory [3] for the mag- 
netic properties of  single domain, non-interacting, 
ellipsoidal, ferromagnetic particles to the case of  

DN 

ON 

Figure 4 Graphical representation of the GBDDF. Only 
the differences between minimum and maximum grain- 
boundary density are displayed. Maximum density is 
205 boundaries per mm and minimum 168 boundaries per 
mm. 
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an arbitrary distribution o f  particle orientations 
[4]. While in many practical cases a simplified 
formalism can be used which requires only 
measurements o f  the grain size or grain-boundary 
density in three perpendicular directions use of  a 
series expansion of  spherical surface harmonics 
permits expansion to higher order i f  experiments 
indicate that the mean shape of  the grains is com- 
plex or the grain-boundary density is highly aniso- 
tropic. We suggest that the description could have 
many applications in the treatment o f  magnetic, 
electrical, acoustic, thermal and plastic properties 
o f  polycrystall ine materials. 
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